Analizy sieciowe w QGIS

ALGORYTMY GRAS V.NET: ALLPAIRS, ISO, SALESMAN, STEINER; WTYCZKA QNEAT3 I CHINESE POSTMAN SOLVER

wer. 2020.05.11

Paweł Zmuda-Trzebiatowski DOKUMENT ROZPOWSZECHNIANY NA LICENCJI CC BY-SA 3.0

Spis treści

Wstęp	2
1. Narzędzia processingu: wektor – analiza sieciowa (QGIS 3.x)	2
1.1. Obliczanie najkrótszej ścieżki	2
1.2. Wyznaczanie obszaru obsługi	5
2. Wtyczka QNEAT3 (QGIS 3.x)	8
2.1. Generowanie macierzy "źródło-cel" podróży	8
2.2. Generowanie Izolinii (Iso-areas) 1	12
3. Algorytmy sieciowe GRASS – V.NET (QGIS 2.18 oraz 3.X) 1	.5
3.1. v.net.allpairs1	15
3.2. v.net.iso	17
3.3. v.net.salesman 1	8
3.4. v.net.steiner	9
4. Inspekcja sieci z wtyczką Chinese Postman Solver 2	20

WSTĘP

W niniejszym samouczku opisano wybrane analizy sieciowe, które są dostępne w QGISie natywnie, przez algorytmy GRASS oraz wtyczki QNEAT3 i Chinese Postman Solver. Analizy sieciowe różnią się od opisanych w innych częściach samouczka analiz przestrzennych tym, że odległości mierzone są w metryce miejskiej na sieci drogowej, a nie w metryce euklidesowej (w linii prostej). Stąd kluczowym ich elementem są liniowe warstwy reprezentujące tę sieć. Wczytaj warstwę *drogi_poz92.shp*, która zawiera informacje o głównych ulicach zlokalizowanych w obrębie miasta Poznań. Ponadto do wykonania części ćwiczeń będziesz potrzebować warstwy punktowej – *straz_pozarna.shp*. Warstwa ta zawiera lokalizacje Jednostek Ratunkowo-Gaśniczych Państwowej Straży Pożarnej oraz jednej jednostki Ochotniczej Straży Pożarnej, które zlokalizowane są w Poznaniu. Obie warstwy zostały wyodrębnione z danych projektu OpenStreetMap. Do celów poglądowych możesz wczytać także warstwę *powiatMPoznanCS92.shp*, która określa granice administracyjne Poznania i została wyodrębniona z danych Państwowego Rejestru Granic. Wszystkie warstwy zostały zapisane z kodowaniem UTF-8 w układzie współrzędnych EPSG:2180.

1. NARZĘDZIA PROCESSINGU: WEKTOR – ANALIZA SIECIOWA (QGIS 3.X)

Uwaga: narzędzia opisane w tym rozdziale są niedostępne w QGISie 2.18. Tamta wersja programu zawierała nieco prostsze wersje narzędzie *RoadGraph*, które zostało opisane na stronach 90-93 poświęconego jej samouczka.

W QGISie 3 udostępnia natywnie zestaw algorytmów sieciowych, które pozwalają obliczać najkrótszą ścieżkę oraz obszar obsługi (*service area*). Narzędzia te dostępne są przez panel processingu w grupie *Wektor – analiza sieciowa*.

1.1. Obliczanie najkrótszej ścieżki

QGIS pozwala obliczyć najkrótszą ścieżkę dla trzech rodzajów danych:

- pomiędzy dwoma wskazanymi punktami (punkt do punktu)
- pomiędzy wskazanym punktem początkowym, a wszystkimi punktami docelowymi określonymi w warstwie (*punkt do warstwy*)
- pomiędzy wszystkimi punktami początkowymi wskazanymi w warstwie, a punktem docelowym (*warstwa do punktu*).

Spróbujmy znaleźć najkrótszą ścieżkę pomiędzy dwoma wskazanymi punktami. Wybierz algorytm Najkrótsza droga (punkt do punktu). W oknie dialogowym algorytmu należy ustawić kolejno:

- Warstwa wektorowa reprezentująca sieć wybierz drogi_pozCS92
- Typ ścieżki do obliczenia, do wyboru są najkrótszy (odległość) lub najszybszy (czas).
- Punkt początkowy (x, y) oraz punkt końcowy (x, y) można ręcznie wpisać lub zaznaczyć myszą po kliknięciu przycisków [...] znajdujących się po prawej stronie pól. Wybierz drugi sposób. Zaznacz dwa punkty zlokalizowane gdzieś w obrębie Poznania. Nie musisz zaznaczać punktów znajdujących się

dokładnie na warstwie uliv. Algorytm automatycznie dociągnie punkt do najbliższej (w linii prostej). Obszar poszukiwań można powiększyć zmieniając parametr *Tolerancja topologii* (pozostaw 0).

🞗 Najkrótsza droga (pun	ıkt do punktu)				×
Parametry Plik zdarze	eń	•	Najkrótsza dı	roga (punkt d	lo
Warstwa wektorowa repre	zentująca sieć		punktu)		
√ [™] drogi_pozCS92 [EPSG	:2180]	✓ 	Algorytm oblicza optym	alna (najkrótsza lub	
Tylko zaznaczone obiek	ĸty		najszybszą) drogę międ	lzy określonymi punktar	ni.
Typ ścieżki do obliczenia					
Najkrótszy		\sim			
Punkt początkowy (x, y)					
351961.7165347622,5106	545.4033286787 [EPSG:21	80]			
Punkt końcowy (x, y)					
364146.410544664,50428	82.7474122453 [EPSG:218	0]			
Parametry zaawan	sowane				
Pole kierunku [optional]					
abc oneway		\sim			
Wartość dla kierunku wp	rzód [opcjonalne]				
F					
Wartość dla kierunku odv	wróconego [opcjonalne]				
Т					
Wartość dla obu kierunkć	ów [opcjonalne]				
В					
Domyślny kierunek					
w obie strony		\sim			
Pole prędkości [optional]					
123 maxspeed		~			
Domyślna prędkość (km/ł	h)				
50,000000		÷			
Tolerancja topologii					
0,000000	•	metry \checkmark			
Nailmátana dessa					
Tuéra warahwa huranga					
Cliworz warstwę tymczaso	wqj				
V wczytaj plik wynikowy	po zakonczeniu				
			·		
				0% Anu	iluj
Wykonaj jako przetwarzani	e wsadowe		Uruchom	Zamknij Pom	IOC

Aby opcja *Typ ścieżki do obliczenia* rozróżniała ścieżki najkrótsze pod względem odległościowym od czasowego należy w parametrach zaawansowanych określić, który atrybut informuje o prędkości (*Pole prędkości*). W przypadku danych pobranych z serwisu geofabrik.de jest to *"maxspeed"*. W polu *do-myślna prędkość* można określić wartość, która QGIS przyjmie w przypadku braku informacji w tabeli atrybutów. Można pozostawić 50km/h.

Ponadto w parametrach zaawansowanych można wskazać, który atrybut informuje o kierunkowości ulicy. W naszym przypadku jest to *"oneway*". Kierunek *"*wprzód" (od początku linii do końca) jest w danych geofabrik oznaczany literą *"*F". Kierunek odwrócony (stosowany np. do opisania odcinków sieci, na których obowiązuje tymczasowa organizacja ruchu przeciwna do standardowej) jest oznaczany literą *"*T", natomiast ruch dwukierunkowy *"*B". W kolejnym polu można wskazać domyślny kierunek ruchu na wypadek braku danych w tabeli atrybutów (w obie strony). W przypadku danych wykorzystywanych w tym ćwiczeniu uwzględnienie kierunkowości najłatwiej jest zauważyć dla dróg dwujezdniowych.

Po uruchomieniu algorytmu zostanie utworzona nowa warstwa reprezentująca najkrótszą ścieżkę, względnie zwrócona zostanie informacja, że taka ścieżka nie istnieje. Jej tabela atrybutów będzie zawierać informacje o współrzędnych punktu początkowego i końcowego oraz wyznaczonym koszcie przejazdu.

Efekt działania algorytmu Najkrótsza ścieżka (punkt do punktu)

W analogiczny sposób spróbuj wyznaczyć najkrótsze trasy dojazdu straży pożarnej do wybranego punktu w centrum. Wykorzystaj algorytm *Najkrótsza ścieżka (warstwa do punktu)*. Zauważ, że jednostki straży pożarnej także nie muszą znajdować się na ulicach. Ma to miejsce w tym ćwiczeniu, gdyż warstwa ulic nie zawiera informacji o drogach dojazdowych.

Efekt działania algorytmu Najkrótsza ścieżka (warstwa do punktu)

1.2. Wyznaczanie obszaru obsługi

Natywne algorytmy sieciowe QGISa pozwalają wyznaczyć także tzw. obszary obsługi (service area), tj. wszystkie drogi osiągalne z punktów startowych w określonym czasie lub limicie odległości. Algorytm podobnie do najkrótszej ścieżki występuje w dwóch wariantach:

- Wyznaczanie obszarów obsługi dla wszystkich punktów zapisanych w warstwie *service area (from layer)*
- Wyznaczanie obszarów obsługi dla wybranego punktu service area (from point).

Okno dialogowe algorytmu pozwala na ustalenie zbliżonych parametrów do algorytmów obliczających najkrótszą ścieżkę. Dodatkowa opcja *Koszt podróży* pozwala na określenie maksymalnego dopuszczalnego kosztu podróży. Jest on wyrażony w metrach lub sekundach.

Wynik może być przedstawiony zarówno jako zbiór linii (*Service area (lines)*), tj. ulic objętych zasięgiem, jak i punktów (*Service area (boundary nodes)*) – w tym przypadku zaznaczane są tylko węzły graniczne danych odcinków sieci. Domyślnie generowany jest zbiór linii.

Q Service area (from layer)	×
Parametry Plik zdarzeń	
Warstwa wektorowa reprezentująca sieć	
√ [°] drogi_pozCS92 [EPSG:2180]	× 🦻
Tylko zaznaczone obiekty	
Warstwa wektorowa z punktami początkowymi	
° straz_pozarna [EPSG:2180]	~ 🦻
Tylko zaznaczone obiekty	
Typ ścieżki do obliczenia	
Najkrótszy	~
Koszt podróży (odległość dla "Najkrótszy", czas dla "Najszybszy")	
2500,000000	
▼ Parametry zaawansowane	
Pole kierunku [optional]	
abc oneway	~
Wartość dla kierunku drogi [opcjonalne]	
F	
Wartość dla kierunku odwróconego [opcjonalne]	
Т	
Wartość dla obu kierunków [opcjonalne]	
В	
Domyślny kierunek	
w obie strony	~
Pole prędkości [optional]	
123 maxspeed	~
Domyślna prędkość (km/h)	
50,000000	
Tolerancja topologii	
0,000000	🔹 metry 🗸
Include upper/lower bound points	
Service area (lines)	
[Twórz warstwę tymczasową]	
🗹 Wczytaj plik wynikowy po zakończeniu	
Service area (boundary nodes)	
[Pomiń dane wyjściowe]	
Wczytaj plik wynikowy po zakończeniu	
	0% Anuluj
Wykonaj jako przetwarzanie wsadowe	Uruchom Zamknij Pomoc

Poleceniem *Service area (from layer)* wyznacz zasięg straży pożarnej dla czasu dojazdu wynoszącego 300 sekund (5 minut) oraz dla odległości wynoszącej 2500 metrów. Załóż, że przepisy są przestrzegane. Aby poprawnie wykonać zadanie dla czasu dojazdu musisz usunąć ograniczenia wynoszące 0 km/h dla niektórych segmentów dróg, tzn. zamienić wartość atrybutu "maxspeed" z 0 na NULL¹. Wyniki przedstaw jako linie.

Przyglądając się wynikom można zauważyć, że obszary obsługi mogą częściowo na siebie nachodzić. Jednak algorytm dodaje w tabeli atrybutów pole "start", które pozwala np. na zróżnicowanie koloru ulic będących w zasięgu poszczególnych jednostek straży albo wyodrębnienie ich do nowych warstw.

Dla porównania możesz też utworzyć bufory wskazujące na zasięgi, które byłyby osiągalne, jeśli pominąć sieć drogową.

¹ Uruchom kalkulator pól w tabeli atrybutów i przelicz pole "maxspeed" poleceniem: *if ("maxspeed" = 0, NULL, "maxspeed")* Więcej o kalkulatorze pól przeczytasz w podstawowym module samouczka.

2. WTYCZKA QNEAT3 (QGIS 3.X)

Analizy sieciowe w QGIS 3 mogą być rozwinięte przez instalację wtyczki QNEAT3. Wtyczka udostępnia trzy podstawowe rodzaje algorytmów:

- Generowanie macierzy typu źródło-cel podróży (Distance Matrices)
- Generowanie Izolinii (*Iso-areas*)
- Znajdowanie najkrótszej ścieżki od punktu do punktu (*Routing*)

2.1. Generowanie macierzy "źródło-cel" podróży

Macierze typu "źródło-cel" podróży (*OD-Matrix*) w przypadku QNEAT3 wskazują odległości pomiędzy każdą parą punktów źródłowych i docelowych. Algorytm jest zatem odpowiednikiem algorytmu przestrzennego *Macierz odległości* (menu [→*Wek-tor*→*Narzędzia analizy*]), przy czym odległości li-

- QNEAT3 Qgis Network Analysis Toolbox
 - Distance Matrices
 - MoD Matrix from Layers as Lines (m:n)
 - Matrix from Layers as Table (m:n)
 - Monometric from Points as Table (n:n)
 - MoD-Matrix from Points as CSV (n:n)
 - OD-Matrix from Points as Lines (n:n)

Iso-Areas

- Iso-Area as Contours (from Layer)
- Iso-Area as Contours (from Point)
- 🔹 Iso-Area as Interpolation (from Layer)
- Iso-Area as Interpolation (from Point)
- Iso-Area as Pointcloud (from Layer)
- 🌼 Iso-Area as Pointcloud (from Point)
- 🐥 Iso-Area as Polygons (from Layer)
- Iso-Area as Polygons (from Point)
 Routing

🚳 Shortest path (point to point)

czone są na sieci drogowej, a nie w linii prostej. Istnieją dwie wersje tego algorytmu:

- dla jednej warstwy punktowej OD-Matrix from Points
- dla niezależnych warstw źródeł i celów podróży OD Matrix from Layers

Ponadto dla każdej z tych wersji można wybrać opcję generowania wyników, jako linii (*as Lines*) lub tabeli (*as Table*). W przypadku wykorzystywania tylko jednej warstwy punktowej można też wygenerować od razu warstwę CSV (*as CSV*).

Skorzystaj z tej ostatniej opcji i wygeneruj macierz odległości pomiędzy jednostkami straży pożarnej.

Okno dialogowe algorytmu zawiera zbliżone parametry do algorytmów opisanych wcześniej. Nie zostały one jednak przetłumaczone na język polski (w nawiasach podano oczekiwane w tym ćwiczeniu wartości):

- Network Layer warstwa sieci drogowej (drogi_pozCS92.shp)
- Point Layer warstwa punktowa (straz_pozarna.shp)
- Unique Point ID Field unikalne pole ID po nim będą rozpoznawane łączone pary punktów (full.id)
- Optimization Cirterion (kryterium optymalizacji) odległość (shortest) lub czas (fastest)
- *Direction Field* pole kierunku (oneway)
- Value for:
 - Forward direction kierunek drogi "wprost" (F)
 - Backward direction kierunek odwrócony (T)
 - Both directions obydwa kierunków (B)
- Default direction domyślny kierunek (Both directions)
- Speed field pole prędkości (maxspeed)
- Default speed domyślna prędkość (50km/h)
- Topology tolerance tolerancja topologii (0)
- Output OD matrix wyjściowa macierz OD (kliknij [...] i wpisz nazwę pliku w oczekiwanym folderze)

Po kliknięciu [Uruchom] zostanie utworzony plik CSV.

Parametry Plik zdarzeń	OD-Matrix from Points as
Network Layer	CSV (n:n)
√ [∞] drogi_pozCS92 [EPSG:2180] ∨	
Tylko zaznaczone obiekty	General: This algorithm implements OD-Matrix analysis to
oint Layer	return the matrix of origin-destination pairs as csv-file vielding network based costs or
° straz pozarna [EPSG:2180] ✓ …	a given network dataset between the
Tylko zaznaczone obiekty	It accounts for points outside of the network
Inique Point ID Field	measured accounting for ellipsoids , entry-, exit
abc full id	 network- and total costs are listed in the result attribute-table.
Dotimization Criterion	Parameters (required):
Shortest	Following Parameters must be set to run the
	algorithm:
	Network Layer Point Layer
abs one way	Unique Point ID Field (numerical) Cost Strategy
Value for forward direction [oncionalno]	Cost Strategy
	Parameters (optional):
Value for backward direction [oncionalpa]	There are also a number of optional parameters t implement direction dependent shortest paths
	and provide information on speeds on the
Value for both directions [oncionalne]	Dissetion Field
	Value for forward direction
Default direction	Value for backward direction Value for both directions
Both directions	Default direction Speed Field
Speed field [ontional]	Default Speed (affects entry/exit costs)
123 maveneed	• Topology tolerance
Default speed (km/b)	Output:
	The output of the algorithm is one file:
	OD-Matrix as csv-file with network based distances as attributes
0,000000	
Dutput OD Matrix	
C:/Users/Pawel Zmuda/Desktop/aaa/a.csv	
	0% Anuluj
/vkonaj jako przetwarzanie wsadowe	Lirucham Zamknii
yronaj jako przetwarzanie wsadowe	ordcholm Zamknij
▼ : × √ f _x origin id	
A B C	D E F

	А	В	С	D	E	F	G
1	origin_id	destination_id	entry_cost	network_cost	exit_cost	total_cost	
2	w28647661	w28647661	0.0				
3	w28647661	w89133916	190.28560683872965	5935.347030950646	32.00745797576367	6157.64009	95765139
4	w28647661	w165179800	190.28560683872965	6148.4973962973145	41.34534838655919	6380.1283	51522604
5	w28647661	w210713758	190.28560683872965	17147.02336563103	16.086493044511432	17353.3954	465514273
~	00047004	000 400 700	400 005 50 500 0000	44540 407040557005	07 00000 700000000	4 4007 000	

Tabela wynikowa składa się z 6 kolumn. Dwie pierwsze stanowią informacje o rozpatrywanym punkcie początkowym i końcowym (*origin_id* i *destination_id*). Następne cztery kolumny określają koszt: wjazdu na sieć (*entry_cost*), koszt przemieszczania się po sieci (*network_cost*), koszt zjazdu (*exit cost*) oraz koszt całkowity będący sumą poprzednich (*total_cost*).

Teraz spróbuj wykonać to samo zadanie, ale rysując między punktami linie. Skorzystaj z algorytmu *OD Matrix from Layers as Lines*. Poniżej zobaczysz efekt działania algorytmu.

Parametry	Plik zdarzeń		OD Matrix from I	avers as
Network Laye	r		Lines (m:n)	ayers as
√ [∞] drogi_po	zCS92 [EPSG:2180]	~ 🔊	Caramb	
Tylko zazn	aczone obiekty yer		This algorithm implements OD- return the matrix of origin- as lines yielding network	Matrix analysis to destination pairs based costs on a
° straz_po	zarna [EPSG:2180]	~ 🥥	given network dataset bet	tween two layer o
Tylko zazn Jnique Point I	aczone obiekty D Field		It accounts for points outsid (eg. <i>non-network-elements</i>), measured accounting for elli	de of the networl Distances are psoids , entry-, exit
abc full id		~	network- and total costs are li attribute-table.	sted in the result
– Fo-Point Laye	r		Parameters (required):	
° straz_po	zarna [EPSG:2180]	~ ?	Following Parameters must be algorithm:	set to run the
Tylko zazn Jnique Point I	aczone obiekty D Field		Network Layer From-Point Layer Unigue From-Point ID	Field (numerical)
abc full_id		~	To-Point Layer Unique To-Point ID Fil	eld (numerical)
Optimization C	riterion		Cost Strategy	cia (namerical)
Shortest		~		
 Paramet Direction field 	try zaawansowane d [optional]		Parameters (optional): There are also a number of op implement direction depend	<i>ptional parameters</i> t Jent shortest paths
abc onewa	у	~	networks edges.	Accus on the
Value for fo	rward direction [opcjonalne]		Direction Field	
F			Value for backward di	rection
Value for ba	ckward direction [opcjonalne]		Value for both direction Default direction	ons
Т			Speed Field Default Speed (affect	ts entry/exit costs)
Value for bo	th directions [opcjonalne]		Topology tolerance	
В			Output	
Default dire	ction		The output of the algorithm is	one layer:
Both direct	ons	~	• OD-Matrix as lines wit	th network based
Speed field	[optional]		distances as attribute	:S
123 maxspe	eed	~		
Default spec	ed (km/h)			
50,000000				
Topology to	ierance			
0,000000		÷.,	1	
				ON Anului

2.2. Generowanie Izolinii (Iso-areas)

QNEAT3 udostępnia 8 wariantów algorytmu generującego izolinie. Podstawowy podział obejmuje generowanie izolinii dla jednego wskazanego punktu *(from Point)* lub dla punktów z wybranej warstwy punktowej *(from Layer)*. Dla każdej z tych opcji dostępne są cztery warianty algorytmu, które różnią się sposobem reprezentacji wyniku. Może być to:

- Warstwa liniowa konturów as Contours
- Warstwa poligonowa as Polygons
- Warstwa punktowa (chmura punktów) as Pointcloud
- Warstwa rastrowa / intropolacja as Interpolation

Sposób generowania wyników jest zbliżony do wykonywanych w poprzednich ćwiczeniach. Wygenerujmy izolinie, jako poligony wskazujące odległość od jednostek straży pożarnej. Ustalmy maksymalną odległość na 2,5 km, a kolejne izolinie generujmy co 500 metrów. Wykorzystaj algorytm *Iso-Area as Polygons (from Layer)*. W oknie dialogowym algorytmu dostępne są następujące parametry:

- Vector Layer representing network warstwa sieci drogowej (drogi_pozCS92.shp)
- Starts Points warstwa punktowa, z której generowane sa izolinie (straz_pozarna.shp)
- Unique Point ID Field unikalne pole ID po nim będą rozpoznawane izolinie (full.id)
- Size of Iso-areas maksymalna wielkość odległości lub czasu izolinii (2500 metrów)
- Contour Interval odległość wstawiania kolejnych izolinii (500m)
- Cellsize of interpolation Raster rozmiar komórki (piksela) wynikowego pliku rastrowego (50m)
- Path type to calculate (rodzaj izolinii) odległość (shortest) lub czas (fastest)
- *Direction Field* pole kierunku (oneway)
- Value for:
 - Forward direction kierunek drogi (F)
 - Backward direction kierunek odwrócony (T)
 - o Both directions obydwu kierunków (B)
- Default direction domyślny kierunek (Both directions)
- *Speed field* pole prędkości (maxspeed)
- Default speed domyślna prędkość (50km/h)
- Topology tolerance tolerancja topologii (0)
- Output Interpolation wyjściowy plik rastrowy (pozostaw warstwę tymczasową)
- Output Polygon wyjściowy plik rastrowy (pozostaw warstwę tymczasową)

🔉 Iso-Area as Polygons (from Layer)	
 ♀ Iso-Area as Polygons (from Layer) Parametry Plik zdarzeń Vector layer representing network √[∞] drogi_pozCS92 [EPSG:2180] Tylko zaznaczone obiekty Start Points [°] straz_pozarna [EPSG:2180] Tylko zaznaczone obiekty Unique Point ID Field abc full_jd 	 Iso-Area as Polygons (from Layer) General: This algorithm implements iso-area analysis to return the iso-area polygons for a maximum cost level and interval levels on a given network dataset for a layer of points. It accounts for points outside of the network (eg. non-network-elements) and increments the iso-areas cost regarding to distance/default speed value. Distances are measured accounting for ellipsoids. Please, only use a projected coordinate
Size of Iso-Area (distance or time value) 2500,000000	system (eg. no WG584) for this kind of analysis. Parameters (required):
Contour Interval (distance or time value) 500,000000 Cellcize of interpolation racter	Following Parameters must be set to run the algorithm: • Network Layer
50 Image: Construction of a sterior 50 Image: Construction of a sterior Path type to calculate Image: Construction of a sterior Shortest Image: Construction of a sterior Image: Parametry zaawansowane Image: Construction of a sterior	 Startpoint Layer Unique Point ID Field (numerical) Maximum cost level for Iso-Area Cost Intervals for Iso-Area Bands Cellsize in Meters (increase default when analyzing larger networks) Cost Strategy
Direction field [optional] abc oneway ✓ Value for forward direction [opcjonalne]	Parameters (optional): There are also a number of <i>optional parameters</i> to implement direction dependent shortest paths and provide information on speeds on the networks edges.
Value for backward direction [opcjonalne] T Value for both directions [opcjonalne] B Default direction	 Direction Field Value for forward direction Value for backward direction Value for both directions Default direction Speed Field Default Speed (affects entry/exit costs) Topology tolerance
Both directions Speed field [optional] 123 maxspeed	Output: The output of the algorithm are two layers: • TIN-Interpolation Distance Raster • Iso-Area Polygons with cost levels as
Default speed (km/h) 50,00000 Topology tolerance	attributes
0,00000 Comparing the transformer of the transform	
LZapisz w piku tymczasowymj Wczytaj plik wynikowy po zakończeniu Output Polygon [Twórz warstwę tymczasowa]	
Wczytaj plik wynikowy po zakończeniu	
Wykonaj jako przetwarzanie wsadowe	0% Anuluj Uruchom Zamknij

ALGORYTMY SIECIOWE GRASS – V.NET (QGIS 2.18 ORAZ 3.X)

W wyniku błędu QGISa algorytmy GRASS NIE działają w wersji 3.4.0 i 3.4.1 pod Windowsem zlokalizowanym dla polskich ustawień językowych. Działają za to w wersji 3.4.2, 3.2.3 oraz 2.18.25.

QGIS dysponuje też częścią algorytmów sieciowych GRASS. Algorytmy te znajdują się w panelu processingu w grupie $GRASS \rightarrow wektor [v.]$ i zaczynają od "v.net.". Przykładowo są to:

- v.net.allpairs generuje macierz odległości między wszystkimi parami punktów danej warstwy wektorowej
- v.net.distance jak wyżej, tylko dla dwóch warstw wektorowych początkowej i końcowej
- v.net.path wyznacza najkrótsze ścieżki pomiędzy wybranymi punktami
- v.net.iso wyznacza izolinie dla danej sieci drogowej
- v.net.timetable wyznacza najszybszą ścieżkę na podstawie rozkładów jazdy
- *v.net.salesman* rozwiązuje problem komiwojażera dla wybranej warstwy punktowej, to jest problem znalezienia najkrótszej ścieżki, która połączy w cykl wszystkie punkty na wybranej warstwie punktowej
- v.net.steiner stara się odnaleźć drzewo Steinera, to jest najkrótszą ścieżkę, która łączy wszystkie punkty ze sobą.

v.net

- v.net.allpairs
- v.net.bridge
- v.net.centrality
- v.net.components
- v.net.connectivity
- ŵ v.net.distance
- ٠ v.net.flow
- ٧ v.net.iso
- Ŷ v.net.nreport
- Ŵ v.net.path
- v.net.report
- v.net.salesman
- v.net.spanningtree
- v.net.steiner
- v.net.timetable
- v.net.visibility

Algorytmy GRASS wymagają innego sposobu informowania o kierunkowości i maksymalnej dopuszczalnej prędkości na ulicach niż algorytmy opisane wcze-

śniej. Powinny być to atrybuty w formie liczbowej, która reprezentuje koszt przebycia danego odcinka drogi. Jako, że nasze dane nie uwzględniają takich informacji, to algorytmy nie będą ich uwzględniać w rozwiązywanych poniżej przykładach.

3.1. v.net.allpairs

Wyszukajmy najkrótsze ścieżki pomiędzy wszystkimi parami jednostek straży pożarnej w Poznaniu. Algorytm v.net.allpairs od narzędzi QNEAT3 odróżnia go to, że w liniowa warstwa wynikowa łączy punkty wykorzystując odcinki sieci. Wartość kosztu jest dopisywana do tabeli atrybutów za ostatnią kolumną.

🕺 v.net.allpairs				
Parametry Plik zdarzeń		• v.net.al	lpairs	
Input vector line layer (arcs)				
√° drogi_pozCS92 [EPSG:2180]	~ 🦻	pairs of node	e shortest path b is in the network	etween all
Tylko zaznaczone obiekty				
Centers point layer (nodes)				
° straz_pozarna [EPSG:2180]	v 🔊			
Tylko zaznaczone obiekty				
Threshold for connecting centers to the network (in map unit)				
500,000000				
Parametry zaawansowane				
Network_Allpairs				
[Zapisz w pliku tymczasowym]				
🗹 Wczytaj plik wynikowy po zakończeniu				
			0%	Anuluj
Wykonaj jako przetwarzanie wsadowe		Uruchom	Zamknij	Pomoc

v.net.alloc

Algorytm do działania wymaga zdefiniowania czterech parametrów:

- Input vector line layer warstwa dróg (drogi_pozCS92.shp)
- Centers point layer warstwa punktowa (straz_pozarna.shp)
- Threshold for connecting centers to the network maksymalna odległość, na jaką można podłączyć punkty do ulic (500 jednostek mapy, tj. metrów w EPSG:2180)
- *Network_Allpairs* warstwa wynikowa (Zapisz w pliku tymczasowym)

Informacja o koszcie (odległości) podróży została zapisana w tabeli atrybutów (cost).

Q 1	🔇 Network_Allpairs :: Liczba obiektów: 4900, odfiltrowanych: 4900, zaznaczonych: 0										
/ 8	2 🖶 😂 🛱 i	j 🌱 🗈 🗎 🍇) 🗏 💟 🔩 🍸	🖺 🍳 🍫 🛅	1. 🔛 🚍 🗐						
	fid	cat	from_cat	to_cat	cost						
1	3165	1	1	2	5656,466						
2	3254	1	1	2	5656,466						

3.2. v.net.iso

Algorytm v.net.iso wymaga podania jednego dodatkowego parametru – *Cost for isolines*. W tym miejscu należy wskazać kolejne wartości izolinii, które ma się stworzyć, oddzielając je od siebie przecinkami. Pozostaw domyślną wartość "1000,2000,3000", a pozostałe parametry ustaw tak jak w przypadku algorytmu v.net.allpairs.

	v.net.iso
Input vector line layer (arcs)	Colite a shured bu
√° drogi_pozCS92 [EPSG:2180] ∨ … 🧔	cost isolines.
Tylko zaznaczone obiekty	
Centers point layer (nodes)	
🖇 straz_pozarna [EPSG:2180] 🗸 📖 🥥	
Tylko zaznaczone obiekty	
Threshold for connecting centers to the network (in map unit)	
500,000000 🚳 🖨	
Costs for isolines	
1000,2000,3000	
Parametry zaawansowane	
Network_Iso	
[Zapisz w pliku tymczasowym]	
Wczytaj plik wynikowy po zakończeniu	
	0% Apului

Po uruchomieniu algorytmu utworzona zostanie nowa warstwa. W jej tabeli atrybutów znajduje się *cat*, który określa przydział danego obiektu (łuku drogi) do określonej kategorii: 1 – od 0 do 1000 (metrów), 2 – od 1000 do 2000, 3 – od 2000 do 3000, 4 – od 3000 w górę. Możesz wykorzystać ten atrybut do wystylizowania tej warstwy wektorowej przez wartość unikalną.

3.3. v.net.salesman

Algorytm rozwiązujący problem komiwojażera wymaga takich samych parametrów, co v.net.allpairs.

				X
Parametry Plik zdarzeń input vector line layer (arcs) ✓* drogi_pozCS92 [EPSG:2180] ✓ Tylko zaznaczone obiekty Centers point layer (nodes) * straz_pozarna [EPSG:2180] ✓ Tylko zaznaczone obiekty Tylko zaznaczone obiekty Tylko zaznaczone obiekty Tylko zaznaczone obiekty Parametry zaawansowane Network_Salesman [Zapisz w pliku tymczasowym] ✓ Wczytaj plik wynikowy po zakończeniu	it)	V.II Crea node	et.salesn tes a cycle conn s (Traveling sale	nan ecting given :sman problem)
Dutput file holding node sequence [Pomiń dane wyjściowe]				
			0%	Anuluj

Uwaga: Przez wzgląd na charakter problemów, zaproponowane przez QGISa rozwiązania problemów komiwojażera oraz drzewa Steinera nie muszą być rozwiązaniami optymalnymi.

3.4. v.net.steiner

Algorytm generujący drzewo Steinera wymaga takich samych parametrów, co v.net.allpairs. W parametrach zaawansowanych można dodatkowo określić maksymalną dopuszczalną liczbę rozgałęzień drzewa (*Number of Steiner points*). Pozostaw tę wartość na -1, co oznacza brak ograniczeń w tym zakresie. QGIS utworzy tle rozgałęzień, ile będzie mu potrzebne do zminimalizowania długości linii.

4. INSPEKCJA SIECI Z WTYCZKĄ CHINESE POSTMAN SOLVER

Zainstaluj wtyczkę *Chinese Postman Solver*. Pozwala ona na wyznaczenie najkrótszej ścieżki w sieci, która przechodzi przez wszystkie łuki (ulice) w obrębie tej sieci, czyli rozwiązuje tzw. problem chińskiego listonosza lub problem inspekcji sieci drogowej.

Wtyczka ta oblicza optymalną drogę dla zaznaczonego fragmentu sieci. Zaznacz znajdującą się w centrum część sieci drogowej warstwy *drogi_pozCS92*.

Uwaga: Obliczenia optymalnej ścieżki są czasochłonne – mogą trwać nawet godziny! Stąd pierwsze próby rozwiązania zadania powinno się podjąć przy uwzględnieniu jedynie małych fragmentów sieci.

Uruchom wtyczkę. Można to zrobić wybierając menu [*Wtyczki→Chinese Postman→Chinese Postman*] lub wybierając symbol solvera z paska narzędzi (rys. niżej w ramce).

	<u>W</u> tyczki	Wekt <u>o</u> r	<u>R</u> aster	<u>B</u> azy danych	W <u>i</u> nternecie	Siatk	а	MMQ	SIS	Pro <u>c</u>	essing
-	🏠 Zar	ządzanie w	/tyczkami	i			Û	2		G	R
	🌏 Kor	nsola Pytho	ona		Ctrl+Alt	t+P	F			15	~~~~
1	<u>C</u> hi	inese Postr	man			•	ľ] Chin	ese	Postm	nan
	<u>E</u> nv	/iroSolutio	ns			•			ŕ	ĩ	
	<u>E</u> xc	elSync							<u>ا</u>	_J	

Włączenie wtyczki spowoduje uruchomienie procedury obliczeniowej. W przypadku, gdy sieć drogowa składa się z wielu rozłącznych "wysp", wtyczka poinformuje o tym i wybierze największą z nich.

Po zakończeniu obliczeń wyświetli się okno z wynikami, w którym wskazane będą trzy parametry:

- Total length of roads całkowita długość dróg, na których rozwiązywany był problem.
- Total length of path całkowita długość najkrótszej ścieżki, która pozwala na przejście po każdym odcinku drogi.
- Length of sections visited twice długość odcinków dróg, które zostały wykorzystane dwukrotnie.

Ponadto w oknie zawarta jest uwaga, że jeśli uzyskane wyniki nie mają sensu, to powinno się ustawić właściwy układ współrzędnych (dla Polski PL-92 lub PL-2000).

Wtyczka utworzy też tymczasową warstwę *chinese_postman*, która będzie przedstawiać wyznaczoną ścieżkę wraz z kierunkiem ruchu.

Należy zauważyć, że wtyczka zawiera uproszczoną implementację problemu, w której nie jest rozróżniania kierunkowość dróg (zaproponowana ścieżka może prowadzić "pod prąd").