QGIS CASE: POŁĄCZENIE DWÓCH TOROWISK W JEDNO

GEOALGORYTMY V.VORONOI.SKELETON, V.TO.RAST.VALUE, R.THIN, R.TO.VECT

WOJCIECH CHLEBOWSKI; PAWEŁ ZMUDA-TRZEBIATOWSKI

Dokument jest rozpowszechniany na licencji CC-BY-SA 3.0

WYZNACZANIE OSI JEZDNI I POŁĄCZENIE DWÓCH TOROWISK W JEDNO CZYLI ZMIANA DRÓG LINIOWYCH W POLIGONY I Z POWROTEM

1. Wprowadzenie

W niniejszej części samouczka opisano zadanie, w którym połączono dwie warstwy liniowe, np. dwie jezdnie, w jedną. Rozwiązano je na dwa sposoby. W obydwu przypadkach w pierwszym kroku linie łączone są w jeden poligon, z którego następnie wyznaczana jest linia środkowa. Stąd metody te nadają się też np. do wyznaczania osi drogi. Zadanie rozwiązano na przykładzie fragmentu sieci tramwajowej w Poznaniu. Ograniczenie się do fragmentu ma na celu szybsze wykonanie zadania, gdyż niektóre z prezentowanych geoalgorytmów są bardzo czasochłonne.

1.1. Wczytanie i przygotowanie warstwy początkowej

Na początku proszę wczytać warstwę liniowej *tram_przycieta.shp*, (wycięty fragment warstwy *tramwaje.shp*, która była użyta w podstawowym samouczku), która jest udostępniona w paczce z plikami do tego zadania na stronie <u>http://www.dts.put.poznan.pl/samouczek-qgis/</u>. Warstwa zapisana jest w układzie EPSG:2180.

Rys. 1.Kolorem niebieskim zaznaczona warstwa *tramwaje*, kolorem czerwonym warstwa wycięta - *tram_przycieta*, na której dalej będziemy kontynuować pracę

1.2. Buffer vectors (buforuj wektory)

Geoalgorytm *Buffer vectors* służy do tworzenia buforu (otoczki) o wybranej przez nas szerokości i wokół wybranych przez nas obiektów. Został już opisany w podstawowej części samouczka w rozdziale "buforowanie". W tym zadaniu posłuży do stworzenia poligonu z warstwy liniowej.

Jeżeli panel z narzędziami geoprocesingu nie jest otwarty, wyświetl go za pomocą skrótu klawiszowego (*Ctrl+Alt+t*). Odnajdź w nim wspomniany wyżej geoalgorytm *Buffer vectors (buforuj wektory)*.

W okienku z parametrami proszę wskazać przyciętą warstwę tramwajową, a stałą wielkość bufora wybrać dość małą, jednak taką aby sąsiednie tory się połączyły, ale np. rozjazdy już nie. Wielkość bufora jest wyrażona w jednostkach mapy. Dla układu EPSG:2180 są to metry. W rozwiązywanym przykładzie wielkość bufora powinna wahać się między 3, a 5.

Poszczególne odcinki torowiska należy też połączyć w jeden obiekt. Można zrobić to agregując pola według opcji *fclass* oraz zaznaczyć "utwórz geometrię jednoczęściową" albo zaznaczyć opcję "agreguj wszystkie wyniki". Utworzenie geometrii jednoczęściowej spowoduje powstanie w następnym kroku spójnych linii.

Jeśli podczas tworzenia geoalgorytm poinformuje nas o błędzie może to być spowodowane występowaniem polskich znaków, np. w nazwie warstwy lub folderu ją zawierającego. Efekt pracy powinien wyglądać podobnie jak na rys. 2. Tak utworzoną warstwę proszę zapisać, gdyż przyda się ona zarówno do rozwiązania problemu opisanego w rozdziale 2, jak i w rozdziale 3.

Rys. 2. Wynik pracy Buffer vector zaznaczony kolorem zielonym

2. Wyznaczanie linii środkowej poligonu – metoda wykorzystująca narzędzie geoprocesingu *v.voronoi.skeleton*

Do wyznaczenia linii środkowej poligonu można użyć narzędzia geoprocesingu *v.voronoi.skeleton*, które jest domyślnie instalowane z QGISem wraz z innymi geoalgorytmami *Grass*. Więc nie będzie trzeba pobierać dodatkowej wtyczki, aby z niego skorzystać.

Uwaga, geoalgorytm *v.voronoi.skeleton* jest dostępny dopiero od QGISa w wersji 2.18.11. W QGISie 3.x algorytm ten jest zintegrowany w *v.voronoi*, jednak przez błąd w programie może uniemożliwić wczytanie warstwy poligonowej (przynajmniej do wersji 3.4.2).

Proszę teraz włączyć okienko ustawiania parametrów i:

- jako warstwę wybrać wcześniej powstały bufor,
- jako Maximum dangle length of skeletons wybrać dość dużą liczbę dodatnią, np. 10; parametr ten określa dokładność wyznaczania linii środkowej; pozostawienie wartości "-1" spowoduje powstanie jednej linii centralnej dla całej warstwy; natomiast wpisanie zbyt małej liczby dodatniej powstanie nadmiarowych krótkich "rozjazdów" łączących boki buforu, które nie były wcześniej liniami; z kolei wpisanie zbyt dużej wartości (np. 1000) może spowodować usunięcie niektórych linii.
- pozostałe parametry można pozostawić bez zmian.

Następnie proszę kliknąć przycisk [Run] i uzbroić się w cierpliwość, ponieważ proces wyznaczania linii środkowych trwa tym dłużej, im większą mamy warstwę poligonu. Czynności wykonane w niniejszym rozdziale powinny być zbliżone do przedstawionych na poniższym rysunku.

Rys. 3. V.voronoi.skeleton

3. Metoda alternatywna – przez raster

Alternatywą metodą wyznaczenia linii środkowej są polecenia GRASS GIS 7, a dokładniej użycie trzech geoalgorytmów (*v.to.rast.value*, *r.thin* oraz *r.to.vect*), których funkcję pozwolą nam uzyskać bardzo zbliżony efekt do tego z punktu poprzedniego.

3.1. Algorytm – v.to.rast.value.

Z wyżej wymienionymi narzędziami będziemy pracować na warstwie buforowej uzyskanej w podrozdziale 1.2, a więc proszę o wczytanie jej, a następnie o uruchomienie *v.to.rast.value*.

Użycie skrótu klawiszowego ctrl+alt+t oraz okienka "Szukaj..." znacznie ułatwi sprawę.

Parametry	Plik zdarzeń	Pomoc	Uruchom w trybie wsa	dowym				
,				-				
Input vector								
Bufor [EPSG:2180] Source of raster values								
								val
Raster value	aster value							
1,000000								
Zasięg region	sięg regionu GRASS GIS 7 (xmin, xmax, ymin, ymax)							
[Pozostaw p	[Pozostaw puste, aby użyć minimalnego zasięgu]							
Wielkość kom	ielkość komórki GRASS GIS 7 (pozostaw 0, aby użyć domyślnej wartości)							
1,000000			- Las					
1,000000	try zaawanco		· · · · ·	_				
1,000000 Parame	try zaawanso	wane		_				
1,000000 Parame Rasterized	etry zaawanso	wane						
1,000000 Parame Rasterized	e try zaawanso ku tymczasowym	wane	va i					
1,000000 Parame Rasterized [Zapisz w plil Wczytaj p	t ry zaawanso ku tymczasowym vlik wynikowy po	wane	• • • •					
1,000000 Parame Rasterized [Zapisz w plil Wczytaj p	e try zaawanso ku tymczasowym Jik wynikowy po	wane						
1,00000 Parame Rasterized [Zapisz w plil Wczytaj p	e try zaawanso ku tymczasowym Jik wynikowy po	wane						
1,00000 Parame Rasterized [Zapisz w plil Wczytaj p	e try zaawanso ku tymczasowym ylik wynikowy po	wane						

Rys. 4. Okno ustawianień parametrów geoalgorytmu v.to.rast.value

Parametry proszę ustawić jak rysunku 4. Szczególną uwagę proszę zwrócić na *Wielkość komórki GRASS GIS 7*. Ważne jest aby jej wartość była mała, np. wynosząca jeden metr (czyli 1 jednostkę mapy w układzie EPSG:2180). Następnie proszę uruchomić geoalgorytm przyciskiem [Run]. Efekt pracy na pierwszy rzut oka to po prostu zakolorowanie warstwy buforowej na czarno, leczy gdy znacznie powiększymy widok do krawędzi obszaru bufora możemy spostrzec "schodkową" strukturę krawędzi - są to właśnie kwadraciki, które ustawiliśmy parametrem *Wielkości komórki GRASS GIS.* Wygenerowana warstwa "rasterized" jest warstwą rastrową.

Rys. 5. Kolor zielony - warstwa buforowa, kolor czarny - warstwa rastrowa, linia koloru fioletowego - warstwa obrazująca przebieg linii tramwajowych które będziemy scalać

3.2. Algorytm – R.thin

Proszę o uruchomienie tytułowego geoalgorytmu tego podrozdziału. W oknie geoalgorytmu można pozostawić domyślne parametry – parametr *maximum numer of iterations* można zwiększyć, jeśli dla domyślnej wartości nie osiągnięto wystarczającego "wyszczuplenia" zrasteryzowanego bufora. Po uruchomieniu go przyciskiem [Run] powinniśmy uzyskać efekt zbliżony do widocznego na rys. 6.

Rys. 6. Kolor czarny - nowopowstała warstwa po wykonaniu geoalgorytmu r.thin

3.3. Algorytm – r.to.vect

Przekształcenie "wyszczuplonej" warstwy rastrowej do wektorowej liniowej odbywa się za pośrednictwem geoalgorytmu *r.to.vect*. Po włączeniu okna ustawień geoalgorytmu proszę dopilnować, aby w polu *Input raster layer* widniała warstwa *Thinned*, a *Feature type* zaznaczona opcja *line*. Dodatkowo według uznania można wygładzić krawędzie zaznaczając *Smooth corners of area features*.

ļ	r.to.vect -	Converts a	raste	r into a vect	o ?	×			
	Parametry	Plik zdarzeń	∢ ₽₫n	Uruchom w tryb	oie wsad	owym			
	Input raster l	but raster layer							
	Rasterized [EPSG:2180]								
	Feature type								
	line 🔻								
	Smooth co	rners of area features							
	Zasięg region	x)							
	[Pozostaw p	Pozostaw puste, aby użyć minimalnego zasięgu]							
	Parame								
	Vectorized	ectorized							
	[Zapisz w plik	u tymczasowym	/m]						
	✓ Wczytaj p	lik wynikowy po	zakoń	czeniu					
İ									
						0%			
				Run	Za	mknij			

Rys. 7. Okno ustawień geoalgorytmu R.to.vect

Na rysunku 8 kolorem czerwonym zaznaczono wynikową warstwę liniową. Nie ma ona tak smukłej geometrii jak warstwa liniowa tramwajowa, ale w mniejszym powiększeniu dość dobrze obrazuje przebieg trasy torowisk tramwajowych.

Rys. 8. Warstwa liniowa powstała za pomocą *r.to.vect* - kolor czerwony

Uzyskaną warstwę liniową możesz dodatkowo uprościć przez użycie geoalgorytmu *uprość* geometrię (menu wektor \rightarrow narzędzia geometrii \rightarrow). Czym wyższy parametr tolerancji, tym bardziej uproszczona będzie uzyskana sieć.

Rys. 9. Geoalgorytm "uprość geometrię"